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Abstract. Security metrics have been proposed to assess the security of
software applications based on the principles of “reduce attack surface”
and “grant least privilege.” While these metrics can help inform the
developer in choosing designs that provide better security, they cannot
on their own show exactly how to make an application more secure. Even
if they could, the onerous task of updating the software to improve its
security is left to the developer. In this paper we present an approach
to automated improvement of software security based on search-based
refactoring. We use the search-based refactoring platform, Code-Imp, to
refactor the code in a fully-automated fashion. The fitness function used
to guide the search is based on a number of software security metrics.
The purpose is to improve the security of the software immediately prior
to its release and deployment. To test the value of this approach we
apply it to an industrial banking application that has a strong security
dimension, namely Wife. The results show an average improvement of
27.5% in the metrics examined. A more detailed analysis reveals that
15.5% of metric improvement results in real improvement in program
security, while the remaining 12% of metric improvement is attributable
to hitherto undocumented weaknesses in the security metrics themselves.

1 Introduction

Software security is generally defined as the engineering of software so that
continues to function correctly under malicious attack [15]. It includes matters
such as ensuring that the software is free of vulnerabilities such as buffer overflow
or unhandled errors, and that SQL queries are not formed with untrusted user
input. In this paper we focus on software security defined as the exposure of
classified data to the rest of the program [1]. Classified data is data whose release
to an unauthorised user would constitute a breach of security. For example, a
person’s bank details are classified, while the address of particular bank branch
would not be classified. If we reduce the extent to which classified data is exposed
to the rest of the program, we can reduce the chance that a malicious attack on
the deployed program will succeed in accessing classified data.
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On the other hand, refactoring is defined as a process that improves software
design without changing observable behavior [9]. While refactoring is normally
carried out “by hand” using only the refactoring support provided by the IDE,
more recent research has investigated the possibility of using a fully automated
approach that relies on search-based refactoring [10,11,13,21]. In this approach, a
search technique such as hill climbing, simulated annealing or a genetic algorithm
is used to drive the refactoring process, which is guided by a software metric, or
set of metrics, that the developer wishes to optimise.

In this paper we explore the possibility of using such an automated refactoring
approach with the goal of automating the improvement of program security. In
a sense, this use of automated refactoring is far more promising than using it to
improve software design. Automated refactoring is liable to change the design
of the refactored program radically. Even though the new design may be better
in many ways, the developers have to invest time to understand it and this may
prove to be more costly than the benefits accrued from the design improvements
achieved. However, if automated refactoring is used to improve program security,
then this drawback does not arise. Security only matters when the software is
released and deployed and hence open to attack. Refactoring to improve security
can therefore be applied as part of the final build process prior to the release
and deployment of the software. The developers can continue to work with the
original program whose design is familiar to them

The remainder of this paper is structured as follows. In section 2 we present
an overview of the Alshammari et al. security metrics that we use in this paper.
In section 3 we present the search-based refactoring platform, Code-Imp, and
apply this to an industrial example in section 4. Related work is surveyed in
section 5 and our conclusions and future work are presented in section 6.

2 Overview of Security Metrics

The security metrics we use in this paper are those defined by Alshammari et
al. [1,3,4]. These metrics are based on the information flow within a program or
software design and cover such areas as data encapsulation, cohesion, coupling,
composition, extensibility, inheritance and design size. The formulae for these
metrics are introduced based on the concept of classified (critical) members
and classes. As defined above, a classified attribute is one whose release to an
unauthorised user would constitute a breach of security. A classified method is
one that interacts directly with a classified attribute. A class is said to be critical
if it contains at least one classified attribute or method. Table 1 summarizes
the Alshammari et al. security metrics that we use to guide the search-based
refactoring process. In the remaining paragraphs of this section these metrics
are introduced in more detail, based on descriptions by Alshammari et al. [1].
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Table 1. Summary of the Alshammari et al. Security Metrics [1]

Metrics Group Metrics Description

The cohesion-based
metrics (CMAI, CAAI,
CAIW, CMW)

measure the potential flow of classified attributes’
values to accessor and mutator methods, designs
with a large amount of classified flow.

The coupling-based met-
ric (CCC)

measures interactions between classes and classi-
fied attributes, rewarding designs that minimise
such interactions.

The composition based
metric (CPCC)

penalises designs with critical classes higher in
the class hierarchy, where they can be accessed
by a large number of subclasses.

The extensibility-based
metrics (CCE and CME)

rewards designs with fewer opportunities for ex-
tending critical classes or classified methods.

The inheritance-based
metrics (CSP, CSI, CMI
and CAI)

reward designs with fewer opportunities for inher-
iting from critical superclasses.

The design size-based
metric (CDP)

rewards designs with a lower proportion of critical
classes.

The data encapsulation-
based metrics (CIDA,
CCDA and COA)

assess the accessibility of classified attributes and
methods.

Cohesion-based metrics:

– Classified Mutator Attribute Interactions (CMAI) is the ratio of the sum (for
all classified attributes) of the number of mutator methods that may access
classified attribute to the total number of possible interactions between the
mutator methods and classified attributes. A mutator method is one that
can set the value of an attribute.

– Classified Accessor Attribute Interactions (CAAI) is the ratio of the sum (for
all classified attributes) of the number of accessor methods that may access
classified attribute to the total number of possible interactions between the
accessor methods and classified attributes. An accessor method is one that
can return the value of an attribute.

– Classified Attributes Interaction Weight (CAIW) is the ratio of the sum
(for all classified attributes) of the number of methods that may access the
classified attribute to the sum (for all attributes) of the number of methods
that may access the attribute.

– Classified Methods Weight (CMW) is the ratio of the number of classified
methods to the total number of methods.

Coupling metric:

– The Critical Classes Coupling (CCC) metric aims to find the degree of cou-
pling between classes and classified attributes in a given design. It is the
ratio of the number of links from classes to classified attributes defined in
other classes to the total number of possible links from all classes to classified
attributes defined in other classes.
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Composition metric:

– The Composite-Part Critical Classes (CPCC) metric is the ratio of the num-
ber of critical composed-part classes to the total number of critical classes.

Extensibility metrics:

– The metric Critical Classes Extensibility (CCE) is defined as the ratio of the
number of the non-finalised critical classes to the total number of critical
classes.

– The metric Critical Methods Extensibility (CME) is defined as the ratio of
the number of the non-finalised classified methods to the total number of
classified methods.

Inheritance metrics:

– Critical Superclasses Proportion (CSP) is the ratio of the number of crit-
ical super classes to the total number of critical classes in an inheritance
hierarchy.

– Critical Superclasses Inheritance (CSI) is the ratio of the sum of classes
that may inherit from each critical superclass to the number of possible
inheritances from all critical classes in a class hierarchy.

– Classified Methods Inheritance (CMI) is the ratio of the number of classified
methods that can be inherited in a hierarchy to the total number of classified
methods in that hierarchy.

– Classified Attributes Inheritance (CAI) is the ratio of the number of classi-
fied attributes that can be inherited in a hierarchy to the total number of
classified attributes in that hierarchy.

Design size metric:

– (CDP) Design size simply takes into account the size, i.e. the number of
classes, in a given program.

Data encapsulation (Accessibility) metrics:

– Classified Instance Data Accessibility (CIDA) is ratio of classified instance
public attributes to classified instance attributes.

– Classified Class Data Accessibility (CCDA) is ratio of classified class public
attributes to classified class attributes.

– Classified Operation Accessibility (COA) is the ratio of classified public meth-
ods to classified methods.

3 Overview of Code-Imp & Refactorings

Code-Imp (Combinatorial Optimisation for Design Improvement) is a fully auto-
mated refactoring framework developed in order to facilitate experimentation in
automatically improving the design of existing programs [11,16,19,20]. It takes
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Fig. 1. Architecture of the Code-Imp automated refactoring framework (from [11])

Java version 6 source code as input and produces as output a refactored ver-
sion of the program. Its output also comprises applied refactorings and metrics
information gathered during the refactoring process.

Figure 1 depicts the architecture of Code-Imp. The right side of the figure
shows the process of refactoring in detail. Code-Imp first extracts the initial
ASTs (Abstract Syntax Trees) from the source code. Code-Imp then searches
the ASTs for candidate refactorings. A refactoring is acceptable its pre- and
post-conditions are satisfied and it complies with the demands of the search
technique in use (in the case of a hill-climb, this means improving the quality of
the design based on the metrics suite; in the case of, e.g. simulated annealing,
a drop in quality may also be accepted). This process is repeated many times.
After the final refactoring is applied, the ASTs are pretty printed to source
code files. During the refactoring process, a rollback mechanism is supported by
logging each change to the ASTs. The change history service makes it possible
to perform a rollback at different levels of granularity. For example, at the finest
level of granularity, individual refactorings can be reversed. At a coarser level
of granularity, a composite refactoring such as a Pull Up Method (which also
contains a Pull Up Field refactoring) can be reversed.

There are three aspects to the search-based refactoring process that takes
place:

– the set of refactorings that can be applied;
– the type of search technique employed;
– the fitness function that directs the search.

Code-Imp currently supports 14 design-level refactorings categorized into
three groups according to their scope as shown in Table 2. These are roughly
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Table 2. A list of implemented refactorings in Code-Imp (from [16])

No. Class-Level Refactorings Description

1 Extract Hierarchy Adds a new subclass to a non-leaf class C
in an inheritance hierarchy.

2 Collapse Hierarchy Removes a non-leaf class from an inheri-
tance hierarchy.

3 Make Superclass Concrete Removes the explicit abstract declaration
of an abstract class without abstract meth-
ods.

4 Make Superclass Abstract Declares a constructorless class explicitly
abstract.

5 Replace Inheritance with Delegation Replaces a direct inheritance relationship
with a delegation relationship.

6 Replace Delegation with Inheritance Replaces a delegation relationship with a
direct inheritance relationship.

Method-Level Refactorings

7 Push Down Method Moves a method from a class to those sub-
classes that require it.

8 Pull Up Method Moves a method from some class(es) to the
immediate superclass.

9 Decrease Method Accessibility Decreases the accessibility of a method
from protected to private or from public
to protected.

10 Increase Method Accessibility Increases the accessibility of a method
from protected to public or from private
to protected.

Field-Level Refactorings

11 Push Down Field Moves a field from a class to those sub-
classes that require it.

12 Pull Up Field Moves a field from some class(es) to the
immediate superclass.

13 Decrease Field Accessibility Decreases the accessibility of a field from
protected to private or from public to pro-
tected.

14 Increase Field Accessibility Increases the accessibility of a field from
protected to public or from private to pro-
tected.

based on refactorings from Fowler’s catalogue [9], though they differ somewhat
in the details. Fowler’s refactorings were designed specifically with the goal of
design improvement in mind, whereas the goal of Code-Imp is to explore the
design space.

The refactoring process is driven by a search technique; in this paper hill-
climbing and simulated annealing are used. The simplest search technique is
steepest-ascent hill-climbing, where the next refactoring to be applied is the one
that produces the best improvement in the fitness function. In first-ascent hill-
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climbing, the first refactoring found to improve the fitness function is applied.
Hill climbing suffers from not being able to escape from local optima. Simulated
annealing avoids this drawback by accepting both positive and negative moves to
escape local optima with the possibility of accepting negative moves decreasing
over time.

The fitness function is a measure of how “good” the program is, so the fitness
function used depends on the quality that we are trying to improve. When Code-
Imp is used to improve software design, the fitness function is a combination of
software quality metrics. In the work described in this paper, the fitness function
is based on the security metrics described in section 2. These can be combined
using either a weighted-sum approach or Pareto optimality [10].

4 Case Study

In order to test the ability of automated refactoring to improve program security,
we chose a sample industrial application that has a strong security dimension
to refactor using Code-Imp. The application we use is Wife 6.1, one of the most
commonly used open source SWIFT3 messaging applications built in Java. It
has been used by variety of financial institutions and banks [12] and comprises
3,500 lines of code and eighty classes. This is a small application, but serves as
a realistic test case for assessing if automated security improvement is possible.
The Code-Imp search process is guided by a fitness function based on the security
metrics by Alshammari et al. [1].

Our approach is as follows. In section 4.1 we describe how the metrics to
be used in the study were determined. These metrics are then combined into a
fitness function using Pareto optimality. The results of refactoring Wife using this
Pareto-optimal fitness function and a variety of search techniques are presented
in section 4.2. In section 4.3 we analyse more closely the effect of the refactoring
process on the metrics and draw some conclusions about the metrics as well as
the value of refactoring to improve security. The overall conclusions to be drawn
from the case study are presented in section 4.4.

4.1 Initial Metric Assessment

The first step is to annotate the Wife source code to specify the classified at-
tributes that will be used subsequently to derive the classified methods and
classes as described above. In total, five fields were marked as classified includ-
ing the Bank Identifier Code (BIC) of the message and the International Bank
Account Number (IBAN) of the bank account. This annotation is shown in pro-
gram 1.

We then use Code-Imp to refactor this program 16 times, on each occasion
using just one of the metrics from table 1 to guide the refactoring process. Our

3 SWIFT (Society for Worldwide Interbank Financial Telecommunication) is an
industry-owned cooperative providing messaging services to financial institutions.
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Program 1 The Classified Field Annotation
@Security(classified = true)

private String bic;

@Security(classified = true)

private String iban;

goal is to find out which security metrics provide the best possibility to improve
the security of the program. Steepest Ascent Hill-Climbing was used as the search
technique, as it is simple and deterministic.

The results of this are presented in table 3. 12 of the metrics prove to be
completely inert under refactoring. This is largely to do with the exact set of
refactoring types that Code-Imp supports. If other refactoring types were sup-
ported, we could expect to see other metrics being affected. It is also partly
dependent on the nature of the program to be refactored. Real applications, like
Wife, contain certain patterns that are candidates to be targeted for refactoring,
and those refactorings are likely to cause changes to the same set of security
metrics and not to others. For example, if a program is not widely dependent on
composition, then it is unlikely to see changes to composition metrics; the same
applies to inheritance, and so on.

Table 3. Results for Running Individual Metrics against Wife Application

Initial Value Final Value Percentage Change

CPCC 1.0 1.0 0.0%

CAIW 0.0037 0.0022 40.8%

CMW 0.0611 0.0611 0.0%

CSP 0.0 0.0 0.0%

CAI 0.0 0.0 0.0%

CCDA 0.0 0.0 0.0%

CMAI 0.0149 0.0149 0.0%

CCC 0.0421 0.0372 13.9%

CCE 1.0 1.0 0.0%

CIDA 0.0 0.0 0.0%

CME 1.0 1.0 0.0%

CMI 0.0 0.0 0.0%

CDP 0.1026 0.0909 13.6%

COA 0.8966 0.5172 42.3%

CAAI 0.0263 0.0263 0.0%

CMI 0.0 0.0 0.0%
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The results of this experiment are clear: four metrics are improved by this
process namely CAIW, CCC, CDP and COA, so we combine these in the next
section to form a single fitness function.

4.2 Pareto Optimal Search

The problems associated with using weighted summation to combine ordinal-
scale metrics are well documented [10]. To avoid these, we use a Pareto optimal
approach to combining the four security metrics identified as promising in the
previous section. In the Pareto-optimal approach, a refactoring is regarded as an
improvement only if it improves at least one of the metrics and does not cause
any of the others to deteriorate.

Code-Imp was run using all three search algorithms described in section 3.
Steepest-Ascent Hill Climbing (HCS) was run once as it is deterministic, while
First-Ascent Hill Climbing (HCF) and Simulated Annealing (SA) were each run
14 times. The small number of runs was due to the long execution time of the
simulated annealing process. As this is a single-instance case study rather than
a randomised experiment, the inability to use statistical inference to produce
generalisable results is not critical.

The results are summarised in table 4. In the case of HCF and SA, the results
presented are those from the best run.

The first observation is that HCS produces identical metric improvements
here as it did when the individual metrics were used on their own. This indicates
that in this example there was no conflict between the metrics, so in no case did
Pareto optimality prevent a refactoring from being applied. This suggests that
this set of metrics form a good combination.

HCF produces identical results to HCS, except for a minor improvement in
CAIW. Simulated Annealing also produces a similar result to HCF and HCS,
with the exception that the CAIW metric is improved dramatically. This is an
example of simulated annealing escaping from a local optimum, and illustrates
that better solutions many be found using such stochastic approaches. There
was a heavy price to pay for this improvement in CAIW: while the refactoring
sequences generated by the hill climbs were modest, (HCF 42 refactorings, HCS
57 refactorings), the best of the simulated annealing runs was 2194 refactorings
in length. In both cases the improvement in CAIW is attributable to a weakness
in this metric, as explained in Section 4.3.

4.3 Qualitative Metrics Analysis

In this subsection we delve into the metric changes in greater detail. Our aim is
to understand what refactorings caused the metrics to improve and to determine
if this is a real improvement or simply an artifact of the search-based refactoring
process. We focus on the results of the steepest-ascent hill climb using Pareto
optimality, as shown in column three of table 4.
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Table 4. Security Metrics Enhancements for all Search Algorithms

First Ascent Steepest Ascent Simulated
Hill Climbing Hill Climbing Annealing

(HCF) (HCS) (SA)

COA 42.3% 42.3% 42.3%

CAIW 41.2% 40.2% 72.6%

CCC 13.9% 13.9% 13.9%

CDP 13.6% 13.6% 13.6%

It is worth mentioning that these metrics are ordinal, i.e. using a scale of
measurement in which data are listed in rank order but without fixed differ-
ences among the entries. This means that expressing the difference in terms
of percentage may not be entirely meaningful. Nevertheless, we are assuming
that the larger the difference in value, the more likely it is that a considerable
improvement has taken place.

In the following paragraphs, we consider in turn each of the metrics that
showed an improvement during the refactoring process.

Classified Operation Accessibility (COA): This is the ratio of classified public
methods to classified methods, from the group of Data Encapsulation Metrics.
The most significant change in security metrics is associated with this metric, as
it undergoes a 42% enhancement from a value of 0.8966 to value of 0.5172. The
change is mainly driven by the refactoring Decrease Method Accessibility.
When applied to a public classified method, it obviously reduces the numerator
and increases the denominator of the ratio, hence reducing (improving) the value
of the metric. The improvement in this metric corresponds to a real improvement
in program security, as it reduces the accessibility of security-critical fields.

Classified Attributes Interaction Weight (CAIW): This is the ratio of the
sum (for all classified attributes) of the number of methods that may access the
classified attribute to the sum (for all attributes) of the number of methods that
may access the attribute, from the group of Cohesion-Based Metrics. This metric
undergoes an improvement of 40% from an initial value of 0.0037 to a final value
of 0.0022. Looking at the refactorings that cause the metric to improve it can
be found that the refactoring Increase Field Accessibility is the largest
contributor. This is surprising because increasing the accessibility of a field (e.g.
from protected to public) would be expected to negatively impact security, if it
impacts it at all. However what is happening is that reducing the accessibility of
a non-classified attribute will enhance the ratio of the summation of the access
to classified attributes compared to non-classified ones. This demonstrates a
weakness in the CAIW metric as it detects an improvement in security although
absolutely no extra protection has been achieved for the security-critical data.
The other main contributor to this metric enhancement is the Pull Up Method
refactoring which reduces the access to classified attributes in the subclass and
limits them to those of the superclass. In other words moving a method to a
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superclass will limit its access to classified methods in subclass. This aspect of
improvement in the CAIW metric represents a real improvement in security.

Classes Design Proportion (CDP): The is the ratio of the number of critical
classes to the total number of classes, from the group of Design Size Metrics.
This metric is enhanced by 13.6% from an initial value of 0.1026 to an improved
value of 0.0909. All improvements were caused by the Extract Hierarchy refac-
toring and were mainly due to the fact that dividing a non-classified class into
two classes will generate two non-classified classes and hence enhance the ra-
tio of classified to non-classified classes. As with CAIW, this “improvement” is
meaningless and demonstrates a weakness in the metric as absolutely no extra
protection to classified data is achieved as a result of the metric improvement. On
the other hand, in the cases where the Extract Hierarchy refactoring divided
a classified class into one classified and one non-classified class, the improvement
in CDP was real. Breaking a critical class into two classes with only one having
access to classified data means that data is rendered accessible to fewer methods
and is therefore more secure.

Critical Classes Coupling (CCC): This is the ratio of the number of links
from classes to classified attributes defined in other classes to the total number
of possible links from all classes to classified attributes defined in other classes,
from the group of Coupling-Based Metrics. The behaviour of CCC is very similar
to that of CDP both in terms of the percentage of enhancement (13.9%) and the
effect of the Extract Hierarchy refactoring on its value. It is interesting to note
note that every time CDP was affected by an Extract Hierarchy refactoring,
CCC was affected by a proportional value. Both the metric weakness and the
recommendation for the CDP metric above are applicable.

4.4 Case Study Conclusions

The key research question we wish to investigate is whether automated refac-
toring can be used to improve program security. 12 out of the 16 Alshammari
et al. metrics we tested proved to be inert under the refactorings we applied,
but this is a consequence of the refactoring suite we use. For the four metrics
that were affected by the refactoring, in each case some of the metric improve-
ment corresponded to real improvement in program security, as detailed in the
Real column of Table 5. This is a positive result in terms of the ability of the
search-based refactoring approach to improve security.

As a by-product of our analysis, we made several other interesting discoveries
about the metrics we used to guide the refactoring process. These were derived
from where the improvement in the security metrics was found not to represent
a true improvement in security, as detailed in the Artificial column of Table 5.

CAIW is a poorly formed metric that rewards the increasing of the accessi-
bility of a non-classified attribute, even though this obviously has no impact on
program security, and in fact is an example of poor object-oriented design. CDP
was also found to be poorly-formed as it rewards the splitting of non-classified
classes which again has no impact on program security, and is again is an ex-
ample of poor object-oriented design. The ability of search-based refactoring to
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Table 5. Security Metrics Enhancements for Steepest-Ascent Hill Climbing

Improvement Real Artificial

COA 42.3% 42.3% 0.0%

CAIW 40.2% 14.5% 25.7%

CCC 13.9% 3.5% 10.4%

CDP 13.6% 2.3% 11.3%

Average 27.5% 15.6% 11.9%

pinpoint metric weaknesses like this was also demonstrated in previous work
that used the QMOOD metrics suite [5] to guide search-based refactoring [20].

5 Related Work

This work merges two research strands: software security metrics and search-
based refactoring.

The traditional approach to measuring software security is to measure the
number of security-related bugs found in the system or the number of the system
is reported in security bulletins [8]. More recent work has focussed on measuring
properties of the software design that are related to security [1, 8].

As well as proposing the metrics suite using in this paper [1,4], Alshammari
et al. developed a hierarchical approach to assessing security [2]. They chose two
principles to measure the security of designs from the perspective of information
flow: grant least privilege [6] which means that each program component will have
access to only the parts that it legitimately requires, and reduce attack surface [7]
which means to reduce the amount of code running with an unauthenticated user.
In a follow-up study that is more closely related to our work [3], Alshammari
et al. looked at the effect on their security metrics of applying refactorings to
program designs. While this can provide static insight into the properties of
the refactorings, it does not automate the improvement of the program as our
approach does.

Smith and Thober [22] try to expose information flow security by using code
refactoring to partition a system into high security and low security components,
where high security components can take high or low security input but cannot
send output to low security components unless this output is investigated and
approved (i.e. declassified). The program needs to be analysed first to identify
high and low security components, and then refactored to isolate the high secu-
rity components. Metrics are not used to measure code security, instead a manual
(or partly-automated) partitioning is used to isolate code with various security
levels. Full automation is impossible, as both partitioning and declassification
need to be performed by developers knowledgeable in the code. By contrast, our
approach requires minimal developer input.

The main application of search-based refactoring has been to automate the
improvement of a program’s design. O’Keeffe and Ó Cinnéide [20] propose an
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automated design improvement approach to improve software flexibility, un-
derstandability, and reusability based on the QMOOD quality model [5]. They
report a significant improvement in understandability and minimal improve-
ment in flexibility, however the the QMOOD reusability function was found to
be unsuitable for automated design improvement. Other work by the same au-
thors [18] investigates if a program can be automatically refactored to make its
metrics profile more similar to that of another program. This approach can be
used to improve design quality when a sample program has some desirable fea-
tures, such as ease of maintenance, and it is desired to achieve these features in
another program.

Seng et al. [21] propose an approach for improving design quality by moving
methods between classes in a program. They use a genetic algorithm with a
fitness function based on coupling, cohesion, complexity and stability to produce
a desirable sequence of move method refactorings. Improving design quality by
moving methods among classes was also investigated by Harman and Tratt [10];
their key contribution is the use a Pareto optimal approach to make combination
of metrics easier. Jensen and Cheng [13] use refactoring in a genetic programming
environment to improve the quality of the design in terms of the QMOOD quality
model. Their approach was found to be capable of introducing design pattern
through the refactoring process, which helps to change the design radically. Kilic
et al. explore the use of a variety of population-based approaches to search-
based parallel refactoring, finding that local beam search could find the best
solutions [14]. Search-based refactoring has also been used to improve other
aspects of software, e.g. to improve program testability [17]. The work presented
in this paper is the first attempt to use search-based refactoring to improve
software security.

6 Conclusions and Future Work

This paper builds on previous work that shows that refactoring can have a sub-
stantial effect on security metrics when applied to a software design [3]. We ex-
tend this work by using the search-based refactoring platform, Code-Imp, guided
by security metrics to test if the security of source code can be improved in an
automated fashion. In our study of an industrial software application, Wife, we
achieved an overall real improvement of 15.5% in the metrics affected by the
refactoring. This improvement is obtained by a fully-automated search-based
refactoring process that requires no developer input other than the annotation
of the classified fields. This security gain at such little cost indicates the value
and potential of the approach.

Previously search-based refactoring has been used mainly to refactor a pro-
gram in order to improve its design [10,11,19]. This creates the difficult problem
of explaining the new design to the developer. In using search-based refactor-
ing to improve security, such problems do not arise. The process is applied to a
program/library just prior to it being released; the developers continue to work
with the original version of the code.
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As summarised in section 4.4, we also demonstrated that some of the Al-
shammari et al. security metrics are poorly formed and require reworking in
order to more truly reflect program security. These are issues to be addressed
by security researchers.

Future work involves extending Code-Imp with new refactorings that can
impact the inert security metrics, e.g. Extract Method, as well as adding refac-
torings that have a specific security dimension, e.g. Make Class Final. One
weakness of the security metrics employed in this paper is that they do not de-
fine clearly the type of attack they protect the program from. If security metrics
were to specify this attack profile, then security test cases could be created that
exploit the security vulnerabilities injected into a sample program. Then it could
be tested if our refactoring approach could actually fix the security vulnerabil-
ities. This would a be a more robust demonstration of construct validity than
the examination of the changes brought about by refactoring that we performed
in this paper.

While our experiences in refactoring Wife have demonstrated the potential
value of search-based refactoring to improve program security, further experi-
ments with larger applications, extra refactorings and more refined metrics are
required to fully explore the potential of this approach.
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